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ABSTRACT Wind energy is the strongest renewable energy source developed in recent decades. Being
systems that are directly connected to the grid of the electrical system, it is essential to use the maximum
available power of the wind and obtain the maximum electrical power converted from the turbine. In this
paper, the fundamental problem of the wind turbine is how to obtain at all times the maximum output power
of the turbine in a wide range of wind speed. The randomness of the wind adds an intrinsic difficulty to
be able to plan the available wind energy in advance. To solve this problem, it is not necessary to know
the dynamic operation of the system; we must anticipate the control response to each one of the different
probable scenarios. An expert control system can be used based on human knowledge and experience, which,
through proper management of its variables and adequate control of criteria to manipulate stored data,
provides a way to determine solutions. In other words, it is a model of the experience of professionals in
this field. The more variables in the system are considered, the more complete the model will be, and the
more information will be available for decision-making, with a more efficient system and higher results
in power generation as a response. For this reason, the objective of this paper is to present expert systems
developed in recent years and, thus, offer a control solution that approximates the conditions of different
wind turbines.

INDEX TERMS Artificial neural network, fuzzy logic, genetic algorithms, wind power generation, control
systems.

I. INTRODUCTION
Energy is a necessary condition for the elaboration and use of
almost all consumer goods and services of the modern world.
Energy is indispensable for the growth of the economy, devel-
opment of work, centers, contributes directly, and indirectly
to the generation of employment and growth in each country,
therefore, it is imperative that the sector is able to meet energy
needs [1].

In this context, it is necessary to increase the generation
of energy to meet demand that the world will requires in the
coming years, opting for alternatives renewable with lower
environmental impact. Wind energy, in particular, reflects
great technological advances in reliability and efficiency [2].

The Global Wind Energy Council (GWEC) in
February 2018 reported that in 2017 more than 54 GW of
wind power was installed, comprised in more than 90 coun-
tries, nine of them with more than 10,000 MW installed, and
29 that have now exceeded 1,000MW. Accumulated capacity
grew by 12.6% to reach 486.8 GW [3].

Wind energy is harnessed to rotate a turbine, which trans-
forms the kinetic energy of the wind, by mechanical energy.
The amount of energy that can be obtained is a function of the
size of the rotor. The greater the length of the blades, the more
power and, therefore, the more energy is produced. The
capacity and size of wind turbines have increased exponen-
tially in recent decades. In 2016 the typical wind turbine had
a nominal power of 7.5 MW and a rotor diameter greater than
125 m [4]. The wind turbine with one of the largest installed
capacities is Vestas V164 with power rated of 9.5MW. These
units were first installed in 2016 [5]. The V164-10.0 MW is
available for sale now and can be delivered for commercial
installation beginning in 2021 [6].

The main disadvantage of wind energy is our inability
to predict and control the wind. The latest meteorological
advances for wind forecasting have greatly improved the
situation, but it is still a problem. When there are wide fluc-
tuations in the wind speed, it is necessary to find the optimal
speed, that it will generate maximum energy. To achieve this
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objective a controller is needed for tracking the maximum
peak power irrespective of the wind speed [7].

The blade pitch control is an effective method to improve
the aerodynamic response of a wind turbine. The inclination
angle controller is based on rotating the blades simultane-
ously, with independent or shared actuator. The angle used
with the wind speed below the nominal value is zero, and then
the angle increases when the wind speed is higher than the
nominal speed [8], [9].

For the control system of a wind turbine, the pitch control
subsystems have a critical role, the move of the pitch angle
is important to limit the capture of power in situations of
strong winds. If the wind exceeds the specifications of the
wind turbine, it is mandatory to disconnect that circuit from
the network or change the inclination of the blades so that
they stop turning, as high velocity wind may damage the
structure [10].

Simultaneous movement is used to restrict the generation
of energy in strong winds, while individual pitching has the
additional advantage of mitigating fatigue damage caused by
cyclical loads that are detrimental to the turbines [11].

Various methods of control have been used for pitch angle
control, as proportional-integral (PI) [12], [13] and intelligent
systems based on fuzzy logic (FL) [14], [15] or combined
methods [16]. Research has been developed on adaptive con-
trol that adjusts to the dynamic behavior of the system in
various situations of electrical generation and safety [17].

The literature review presents a trend in the implemen-
tation of pitch control by expert systems, various authors
support it to be a variable problem over time and its solution
is based on deducting situation from probabilistic data or pre-
diction as conditions of weather. In addition to the difficulty
involved in complex mathematical models.

The objective of this work is to present a review on expert
systems developed in recent years, and thus offer a control
solution that approximates the conditions of different wind
turbines. To develop an expert control system is not only
necessary to know the dynamic operation of the system,
we must anticipate the control response to each of the dif-
ferent probable scenarios. The more variables of the sys-
tem are considered, the more information will be available
for decision-making, having as a response a more efficient
system and greater results in power generation. That is why
an expert control system is based on human knowledge and
experience and that, through good management of its vari-
ables and an adequate control of criteria to manipulate stored
data, provides a way to determine solutions. In other words,
it is a control model of the experience of professionals in this
area.

II. WIND TURBINE GENERATOR SYSTEMS
Wind turbines are machines that convert the kinetic energy
of the wind into electrical energy. The configuration of wind
turbine in this work is shown in Fig. 1. The threemain compo-
nents are the blade rotor, gearbox and electric generator. The
rotor captures the kinetic energy of the wind to rotate the slow

FIGURE 1. Parts of a wind turbine.

shaft; the gearbox multiplies this speed and transmits it to the
fast shaft. With a higher speed, the fast shaft is connected
to the generator and thus produces alternating current [18].
Some systems convert AC to DC using a rectifier and convert
DC back to AC to match the frequency and phase of the
network [19].

Of these types of wind turbines, the maximum energy can
be extracted only of variable speed wind turbines. The rotor
speed can also be controlled to minimize the stress on the
tower structure, gears and shaft, since the blades absorb peaks
of torque during the variation of the speed of rotation, leading
to a longer installation life [13].

A. AERODYNAMIC MODEL
The analysis to extract the maximum power of wind that
passes through a turbine starts with the wind that crosses
sweeping area of the rotor. The boundary that separates the
affected flow area from the unaffected flow area is the limit
surface, which forms a tube of current with constant flow in
a circular sweeping area. The approaching undisturbed wind
is V, and it becomes slow when the turbine extracts a part of
its kinetic energy. The wind that crosses the turbine is Va, has
a lower speed and its pressure is reduced. The wind speed
through the plane of the rotor blades is Vb. This phenomenon
is shown in Fig. 2 [20].

FIGURE 2. Airflow through an actuator disc.

The rotor power extracted by the blades is equal to the
difference of kinetic energy between the ascending and
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descending airflow rates:

Protor =
1
2
m(V 2

− V 2
a ) (1)

The air mass flow m within the flow tube is the same every-
where. The point to determine the mass flow is in the plane of
the rotor where the area of the cross section is only the area
of rotor A and the wind density ρ.

m = ρAVb (2)

If the wind speed through the rotor plane Vb is the average of
V and Va then:

Protor =
1
2
ρA
(
V + Va

2

)
(V 2
− V 2

a ) (3)

If the power coefficient Cp is given by:

Cp =
1
2

(
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V

)(
1− (

Va
V

)
2
)

(4)

Therefore the expression for the rotor power is:

Protor =
1
2
ρAV 3Cp (5)

It is usual to select a wind turbine according to the perfor-
mance of the rotor as a function of the specific speed, λ,
defined as the coefficient of the tangential speed at the blade
tip and wind speed.

λ =
�R
V
=

2πnR
60V

(6)

where � is the rotation frequency in rad / sec, n is the speed
of rotation in rpm, R is the radius of the rotor and V is the
wind speed.

It is possible to use a method of approximate values depen-
dent on λ and on the pitch angle of the blade β, based on the
characteristics of the turbine. The Cp is defined by:

Cp (λ, β) = C1

(
C2

λi
− C3β − C4β

C5 − C6

)
e−

C7
λi (7)

where:

λi =

[(
1

λ+ C8β

)
−

(
C9

β3 + 1

)]−1
(8)

The values of the constants for variable speed are c1=0.73,
c2 = 151, c3 = 0.58, c4 = 0.002, c5 = 2.14, c6 =
13.2, c7 = 18.4, c8 = −0.02 yc9 = −0.003. To minimize
the error between the curve in the manufacturer’s documen-
tation and the curve obtained by means of equations (7) and
(8), multidimensional optimization was applied [21], [22].

Fig. 3 shows the power coefficient curves of the wind
turbine as a function of the tip-speed ratio and pitch angle.

Once the Cp has been calculated, it is possible to determine
the torque of the rotor [23], [24].

Trotor =
1
2
ρπR3v2Ct (9)

where torque coefficient Ct is:

Ct =
Cp
λ

(10)

FIGURE 3. Power coefficient curves.

B. MECHANIC MODEL
The mechanical transmission system or power train is com-
posed of all the elements that transmit mechanical torque to
the axis of rotation. In the bibliography, you can find a diver-
sity of mechanical models, from those that simplify the whole
system in a single mass to the more complex ones that use up
to six masses. The aerodynamic and electric pair will be the
inputs to the model, while the speeds of rotation will be the
output. Fig. 4 shows some of these models proposed in [25].

FIGURE 4. Drive train models of wind turbine. a) Six-mass model,
b) Transformed three-mass system.

However, the model is two masses is the most common
model for wind turbine transmissions and can be usedwithout
losing accuracy. This model of two masses is shown in Fig. 5.
The transmission system comprising two masses joined by a
shaft, all referred to the same side of the gearbox [9], [26].

The mechanical model of two masses corresponds to
(11) and (12). The aerodynamic torque of the wind tur-
bine rotor and the electromechanical torque of the direct
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FIGURE 5. Two masses model.

connection induction generator act in opposition to each
other [27].

2Hrotor
dwrotor
dt

= Trotor − dsh
(
wrotor − wgen

)
− ksh

(
θrotor − θgen

)
(11)

2Hgen
dwgen
dt

= dsh
(
wrotor − wgen

)
+ ksh

(
θrotor − θgen

)
− Tgen (12)

The inertial constant is obtained from moments of inertia
that depend exclusively on the geometry and distribution
of the mass of the element and are calculated according
to (13) and (14).

Hrotor =
Jrotorw2

rotor

2Pn
(13)

Hgen =
Jgenw2

gen

2Pn
(14)

Its value describes the time during which the generator could
generate its nominal power having as the only source of
available energy the kinetics stored in its rotationmasses [26].

In the case of the wind rotor, the inertia can be approxi-
mated according to (15).

Jrotor =
1
8
mrR2 (15)

where mr represents the mass of the rotor (includes the three
blades) and R is the radius of the rotor.

C. GENERATOR
The generator is an electromechanical component that con-
verts mechanical power into electrical power, typically hav-
ing a stator and a rotor. The stator is a housing with mounted
coils. The rotor is the rotating part and its function is to
produce a magnetic field. The rotor can be a permanent
magnet or an electromagnet. By rotating its magnetic field,
it is induced to the windings of the stator causing a voltage at
the stator terminals. Two main types of generators used in the
industry are synchronous generator (SG), when the magnetic
field of the stator is following the magnetic field of the rotor.
Moreover, asynchronous generator (AG), when there is no
tracking between magnetic fields [18].

Two types of SGs are used in wind turbines. Wound Rotor
Synchronous Generator (WRSG) where the stator windings
are connected directly to the grid and, therefore, the rotation
speed is set by the frequency of the supply grid. In the rotor of
winding, direct current flows and generates the exciter mag-
netic field, which rotates at a synchronous speed. Moreover,
the Permanent Magnet Synchronous Generator (PMSG) with
a wound stator and a permanent magnet rotor. It has a high
efficiency since its excitation is provided without any power
supply. It requires the use of an AC/DC/AC power converter
to adjust the voltage and frequency supply grid [28].

The AGs needs a reactive magnetization current in the
stator that is supply directly by the grid to obtain its excitation,
this causes transmission losses and, in some situations, it can
make the grid unstable. To avoid this, capacitor banks or elec-
tronic power converters are used [23]. The interaction of the
associated magnetic field of the rotor with the stator field
results in a torque acting on the wind turbine rotor [18].
The rotor of AGs can be designed as a Short Circuit rotor
(SCIG) or as a Wound Rotor (WRIG). The rotor of a SCIG
cannot be controlled from the outside; its speed should
change only in a small percentage, since its slip varies with
changes in wind speed so that fluctuations in wind energy are
transmit directly to the grid. These transients are especially
critical during the connection to grid, so it is required to equip
with a soft start mechanism. In aWRIG the rotor windings are
connected through slip rings to electronic power equipment.
Two types of WRIG configurations are used. OptiSlip or
FlexiSlip induction generators (OSIG or FSIG), these connect
the rotor windings with a variable external resistance. The
range of the dynamic speed control depends on the size of
the resistance, normally, the slip for OSIG is 10%, while for
FSIG it is approximately 16%. The double feed induction
generators (DFIG), where the stator windings are directly
connected to the constant frequency grid, while the rotor is
connected to the grid through a backup power converter. The
size of this converter is related to the selected speed range,
generally, only a fraction of up to 70% of the speed range is
used [21].

According to the needs of the market and different gener-
ators, four different topologies have been identified: Type I
fixed speed, SCIG or WRSG directly connected to grid,
speed operation fixed whit 1-2% slip. Type II limited speed,
OSIG or FISIG directly connected to grid, speed operation
fixedwith 10% slip. Type III variable speed partial size, DFIG
connected to frequency convert, speed operation variablewhit
−30% to+40% slip. Finally, Type IV variable speed, PMSG
connected to full size frequency converter, speed operation
fully variable [29].

III. PITCH CONTROL
The objectives of the control system of a wind turbine are
based on three tasks, operate at the maximum power point
(MPP), protect the rotor, the generator and the electronic
equipment from overload during high-burst winds and finally
when the generator is disconnected of the network, under this
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condition the rotor speedmust be zero. Active or passive pitch
control is used to capture as much energy as possible and pro-
tect the mechanical and electronic system.With the control of
pitch, speed, acceleration and deceleration are controlled to
reduce the mechanical tensions in the blades, the bucket and
the tower, as well as the electrical current peaks. Passive pitch
control (Stall control). The blades are attached to the hub and
thewind attack angle of the wings is fixed. The design of rotor
aerodynamic causes losing efficiency when the wind speed
exceeds a rated value. Active Pitch control. The blades can
rotate to change the angle of attack with the wind, when the
power output is too high or too low and must be able to adjust
by a fraction of a degree at a time, corresponding to a change
in wind speed, to maintain a constant power output [30].

FIGURE 6. Operating regions of a wind turbine.

The active pitch control system operate in a specific range
of wind speeds. There are four regions of operation as shown
in Fig. 6. Region I represents wind speed below the lower
limit required to start rotation and where the power generated
is zero. When this speed is exceeded, the rotor starts to rotate
and enters a region II that is bounded by the starting speed and
the cutting speed where the generator rotates at its nominal
speed. The third region, covers from the nominal speed to
the stoppage speed, which is the limit speed to which design
and safety requires rotation to stop. Finally the IV region,
where for safety the wind turbine the assembly must have a
mechanical brake [31], [32].

The purpose of a feedback control system is to reduce the
error e(k), between any variable and its value set to zero as
quickly as possible. The error is expressed in (16) [12].

e (t) = ωref − ωrotor (t) (16)

The pitch actuator is modeled as an integrator or a first-order
delay system with a time constant (τc) and it is expressed
in (17) [14].

dβ
dt
= −

1
τc
β + 1

1
τc
βref (17)

Which is subject to βmin ≤ β ≤ βmax ,
(
dβ
dt

)
min
≤

dβ
dt ≤(

dβ
dt

)
max

Where βmin and βmax are the minimum and maxi-

mum pitch angles, respectively.

IV. EXPERT CONTROL SYSTEMS
Professor Edward Feigenbaum at theWorld Congress of Arti-
ficial Intelligence of 1980 defines for the first time an Expert
System (ES) as an intelligent computer program that uses the
knowledge and inference procedure to solve a problem that
is quite difficult and requires special skills of the humans.
According to the above definition, it can be explained as expe-
rience, which is the vast body of task-specific knowledge,
transferred from a human to a computer. The computer can
make inferences and reach a specific conclusion through any
formality [33].

ES’s may possess quality information, probability theory,
fuzzy set theory, and a series of arithmetic and logical rules,
based on heuristic expectations. By using the knowledge
acquired, an ES can analyze input information and make exit
decisions, which are usually optimal [34].

ES provide powerful and flexible means to obtain solutions
to a variety of problems that often can not be addressed by
other more traditional methods. Therefore, its use is prolifer-
ating in many technological sectors [35].

Contrary to conventional computer programs that use algo-
rithms, ES select a solution from a vast search space in
the most efficient way possible. To achieve this, they use
knowledge to abort non-promising branches and focus on
useful data. They provide a perfectly valid solution in most
cases within the specific application for which they were
designed [36].

An important advantage of expert systems is the ease with
which the knowledge bases can be modified as new rules and
facts are known. This is for its architecture that separates the
knowledge base from the inference engine [37].

Several techniques can be used as a basis for the devel-
opment of expert control, fuzzy logic, neural network, and
intelligent search algorithms [38]. According to the analyzed
bibliography, a variety of expert systems used in the pitch
control for wind turbines were found that could be classified
in a probabilistic model, where neural networks are used
for the recognition of patterns, learning, classification and
abstraction of various situations. Rule-based model, where
according to the knowledge base obtained from previous
events, provide a wide range of possibilities for making infer-
ences, and finally, Optimizationmodel, where from a series of
data the algorithm selects the optimal solution. Several hybrid
models were also found, which not only combine different
models, but also combine solutions with conventional con-
troller models for example PID.

A. FUZZY LOGIC CONTROL
Fuzzy logic (FL) is a means for transforming linguistic
knowledge into a mathematical model; uses control rules
based on set theory for decision-making [39].

A properly designed Fuzzy Logic Controller (FLC) has
higher performance in the presence of variations in input
parameters and external disturbances than traditional con-
trollers do, because works without a mathematical model.
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FLC can compensate the negative effects by nonlinearity,
uncertainties and unknown parameters [40].

In general, according to [41]–[45] there are three stages
in FLC.

1) FUZZIFICATION
It consists of taking the inputs and convert them to a fuzzy set
using linguistic terms and membership functions (MFs). The
following is a short list of methods described in the literature
to assign membership values or functions to fuzzy variables.
• Intuition: Capacity of humans to develop membership
functions through their own understanding.

• Inference: It uses knowledge to deduce a conclusion,
given a body of facts and knowledge.

• Rank ordering: It assign membership values to a fuzzy
variable through assessing by an expert, a committee,
a poll, and other opinion methods.

• Inductive reasoning: Membership functions than can
derives from a consensus to a particular (derives the
generic from the specific).

2) FUZZY RULES
This step consists of a database along the development action
rules that governing a fuzzy controller; it can be described
using words or simple sentences in natural language as
opposed to formal predicate calculus statements. Typically,
the rule base is made up of a list of rules described in two
methods:

Mamdani Inference Model:

IFx1 = A1andx2 = A2THENy = B

Takagi-Sugeno-Kang:

IFx1 = A1andx2 = A2THENy = f (x1, x2)

3) DEFUZZIFICATION
It consists of the conversion of the aggregated fuzzy set to a
precise action with real value. There are several methods for
doing this, consist in to satisfying mathematical expressions,
the most commons are: Centroid, Centroid of Area, Bisector,
Mean of Maximum, Height, Center of Sums.

Expert systems based on FLC with application in wind
turbines have been developed to reduce the effects of rapid
and sudden variation in wind speed. In applications for pitch
control, different types of controllers were found, this is
normal considering that the rules to describe the application
are not programmed by the same expert engineer. The works
found with this type of controllers were grouped into two
blocks. First, those with a simple FLC to obtain a pitch angle
command with two input variables. Second, works that com-
bine FLC whit traditional controllers Proportional-Integral-
Derivative for to have a better performance.

In the first group of FLC’s, works were found where
PSMG, DFIG and SCIG are used. For turbines with PMSG,
a type of FLC was found for common pitch control for
operate at the MPP or nominal power, which is described

FIGURE 7. Basic scheme of FLC for pitch angle.

in Fig. 7. The developed of this FLC consists of two input
signals and one output signal. However, different amounts of
rules were used, with contributions from 25 rules predomi-
nating. The difference between the active power and the rated
value (eP) and the variation of the power error1(eP) are used
in [8] and [46]–[49] as the controller inputs. (eP) and 1(eP)
are defined in (18) and (19).

eP = Pg(t)− Pg,rated (t) (18)

1(eP) = eP(t)− eP(t − 1) (19)

In [26], [50], and [51] is used the same control logic to get
pitch angle control but use as inputs the error of the generator
shaft speed (eω) and the error difference 1(eω). However,

Habibi et al. [26] combined pitch FLC with a torque FLC
to maintain the power generated at a nominal value. Balasub-
ramanian et al. [7] used as input the error of the torque (eτ )
and the error difference1(eτ ). Tiwari et al. [42] investigated
the performance of the control strategies in PMSG in terms
of aerodynamic torque, generator speed and the generator
power. Use as inputs the error of the Power (eP) and generated
shaft speed (eω). Finally, for PMSG, Van et al. [14] added a
third variable to an FLC, used the error power (eP), variation
of the power error 1(eP) and generated speed error (eω),
unlike the previous authors used TSK as an inference model
and did experimentation whit a PMSG of 2.68kW.

Hassan et al. [16], Elfergani et al. [43], and Naik and
Gupta [52] repeat the same control strategy used in PMSG
for a SCIG. However, [40] and [53] also combine torque
control at the same time as a pitch control for a DFIG.
Renuka and Reji [54] proposed changing the input variables
to wind speed (υ) and the error in the speed of rotation of the
generator (eω) also for a DFIG motor. Finally

Zeddini et al. [55] used as input the voltage (V) and the
error in voltage (eV) for an OSIG.

All the authors that presented this scheme of FLC, used
as simulation software MatLab-Simulink. Table 1, presents
a summary of these works, presents the conditions for their
simulations, as well as the results obtained.

The second group of FLC for pitch presents more elaborate
control strategies, is complemented with a closed loop control
action defined by a mathematical model with respect to the
input signal. The standard PID controller is well known and
are considered one of the most traditional control loops that
are used on industrial.

A PID controller is continuously calculates an error value
e(t) as the difference between a desired set-point (SP) and
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TABLE 1. Summary of pitch angle FLC, traditional scheme based of two inputs.

a measured process-variable (PV) and applies a correction
based on proportional, integral, and derivative gains. The
Proportional value depends on the current error. The Integral
depends on past errors and the Derivative is a prediction of
future errors. The sum of these three actions is used to adjust
the process by means of a control element, in this case the
actuator to vary the pitch angle. The controller requires tuning
the values of PID gain parameters in order to get the best
performance of the controller. Changing these Parameters
will cause changes in the system response compared to the
required response [56], [57].

Yang et al. [58] work with two controllers. A PD torque
control and PD pitch control; however, there is the problem
when the nominal speed is exceeded. To resolve this, three
FLC modules are integrated to work in parallel. FLC1 for

angle position Pitch, FLC2 for torque and FLC3 for to control
the speeding.

Civelek et al. [59] proposed a pitch controller combining
FLC-PID principles. Fuzzy is the medium for to change the
gains of PID according to the error of process variable, if the
error is negative or positive or the measured value exceeds in
a great extent. Xiao et al. [60] added a feed forward FLC. The
effect of feed forward FLC is providing a reasonable value of
pitch angle for to improve the response rapidness according to
the increment of wind speed, then plus it with the output value
of FLC-PID controller. However, Vega et al. [61] change the
concept of using an adaptive controller of variable-gain and
uses two independent controllers. A PI when the system is
stable and FLC when the variation of energy is very big.
The control actions are combines using a correlation factor
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defined by the error and error derivative. When the error
and error derivative are small, this puts more weight on the
control action PI. Otherwise, if error and error derivative it are
large, it is give greater weight on the FLC. Huang et al. [62]
used a similar technique but also adds to feedforward FLC to
compensate the pitch angle for to inhibit disturbance of wind
speed.

A FLC has been propose that develops gains for a PI con-
trol as output variable. These gains are added to the previously
calculated earnings of a PI controller. This effective gain
establishes the control action [52], [56]. Shrinath et al. [63]
add control action of two fuzzy controllers namely: PI-type
FLC (PIT-FLC) and Pitch Angle Tuning FLC (PAT-FLC).
This controller eventually improves the performance of the
entire system. Baburajan [64] proposed a Fuzzy adaptive
PID. By means of an FLC the gains of a PID controller are
obtained, the sum of these three actions are addedwith actions
of PID control developed with fixed gain values.

Motivated by the dynamic loads in ever-larger wind
turbines. Different researchers have developed mitigation
measures from the control systems managing to reduce
these unbalanced structural loads and regulate the power.
This includes the pitch control individually for each blade.
Han et al. [65] proposed three different FLC. The first FLC
has been used for controlling the collective pitch angle and
wind rotor torque, the second and third FLC are related to
d-q axis blade moment. To adjust the blade pitch angles β1,
β2 and β3, the individual blade pitch make activity within a
certain range to achieve the purpose of fatigue load reduction.
Similarly, Lasheen and Elshafei [66] propose the control
action derived from three controllers. The first is component
is a PI individual pitch controller, the main objective is to
reduce the flap-wise moment on the turbine blades. The
steady state pitch angle operating point is the second com-
ponent. It depends on the average wind speed and is based
on a gap-metric criterion. The gap metric is a measure of the
maximum difference between the two transfer functions. This
transfer function is a linearized model of a speed wind range.
This value can be pre-stores through a table of values. The
collective pitch component is the third component. A model
predictive is used, and it depends of model of system for
predicting the future output over a selected environment.
At every sampling instant, an optimization problem is solved
on-line to get the control action. The control model in [67]
works with three controllers too. A first FLC define a pro-
portional gain for tuning a second individual pitch controller.
The control action of this controller is added to the control
action of a collective pitch control.

Elyaalaoui et al. [68] propose a hierarchal PI-Fuzzy-PI
(PIFPI) controller for to generate the active power reference
for the load frequency control and the pitch angle for the pitch
control. The power error is multiplied by gains of a first PI
(or PD) and the result is the input to FLC. The FLC output
is the integration constant of a second PI controller. In [41]
an artificial organic controllers (AOC) is presented. This
controller is developed using a hierarchal model. Proportional

and derivative (PD) strategy are the input for a FLC with
molecular inference system as control law. The integration
of the output FLC for computing a PI-output response added
to the PD-output response. This design considers a PID-based
artificial organic controller (PID-AOC).

In [69] a fuzzy hybrid is proposed. Divide into 5 sections of
pitch angle, where stability is observed. Each section works
with a different PID. A FLC is used to select the controller,
according to the required reference angle.

Table 2, presents a summary of these works, presents
the conditions for their simulations, as well as the results
obtained.

B. ARTIFICIAL NEURAL NETWORK
Artificial neural networks (ANN) are computational models
inspired by the human brain as a non-linear dynamic sys-
tem using set of processing units (artificial neurons) and an
interconnected structure (artificial synapses). In its structure,
the neurons are interconnected in three layers. The data enters
through the ‘‘input layer’’, passes through the ‘‘hidden layer’’
(one or several) and leaves through the ‘‘output layer’’. Each
layer has a certain number of neurons that operate in parallel
and are connected to the neurons of other layers and each con-
nection has an associated weight that modulate the effect of
the associated input signals, and the nonlinear characteristic
of neurons is represented by mathematical model. A model
of ANN is showed in Fig. 8 [70].

FIGURE 8. Architecture of a multi-layer neural network.

The inputs xi (x1, . . . , xn) of n external neurons to a neuron
j, are considered unidirectional. Each j-th neuron is character-
ized by a numerical value called activation state θj; associated
to each one there is an output function, fj, which transforms
the current state of activation into an output signal yj. Said
signal is sent through the unidirectional communication chan-
nels to other neuron of the network; in these channels the
signal is modified according to the synapse (the weight, wij)
associated to each of them. The learning capability of an
artificial neuron is achieved by adjusting the weights in accor-
dance a learning algorithm. It can be depicted as in Fig. 9 [38].

Training is the process of modifying the connection
weights using a learning method, in which an input is pre-
sented to the network along with the desired output and the
weights are adjusted so that the network attempts to produce
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TABLE 2. Summary of pitch angle FLC, scheme combined with PID feedback control models.

FIGURE 9. Artificial neuron mode.

the desired output. The weights after training contain mean-
ingful information whereas before training they are random
and have no meaning [71].

Four basic variables characterize an ANN, topology, train-
ing method, type of association input-output data, and the
presentation of the information. More than 50 types of
ANN can be distinguished, for example: multilayer percep-
tron (MLP); radial basis function neural network (RBFNN);
backpropagation networks (BPNN); Wavelet neural network
(Wavelet NN); self-organized-mapNN (SOMNN); Recurrent
NN; time delay NN; Hopfield network; auto-associative NN;
convolutional NN; learning vector quantization networks;
adaptive resonance theory (ART) NN; neuro-fuzzy networks;
dynamic NN [72].
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ANN has two disadvantages. First, the processing is not
a time function. The relationship between the inputs and the
outputs is a momentary corresponding relationship. In addi-
tion, the accumulation effect of the inputs are not taken
into consideration on the outputs. A momentary output just
depends on the current inputs without reference to earlier
inputs. The main advantages are they can learn to perform
tasks through a training process, create their own structure,
still operate when its structure is damaged and they can be
implemented in parallel andwork fast. Consequently, they are
programmed to carry out online processes [73].

The ANN are useful for solving a wide range of problems.
They can detect patterns in a dataset, the data similari-
ties or dissimilarities are identified and classified via unsu-
pervised learning. ANNs can be applied to problems where
a theoretical model cannot be applied. They can approximate
the input data to a function with a certain degree of detail.
With ANN, solutions that maximizes, or minimizes, a func-
tion subject to different constraints can be found and can be
trained to obtain a prediction of the future behavior. Finally,
it is possible to do control, determine the inputs that will cause
a desired system behavior [72].

ANNs have been widely used in a wide range of industry
applications such as medicine, chemistry, robotics, geospatial
analysis, etc. In wind energy field, the control systems operate
in different scenarios, as they can adapt the operation mode
to specific conditions of wind.

In [74], an adaptive neural pitch angle control strategy
is proposed for the wind turbines operating in region III.
A filtered regulation error technique is utilized to transform
complex system into a simple one, and thus the feedback
linearization can be utilized. Then, an online learning approx-
imation (OLA) two-layer NN is employed to estimate the
unknown nonlinear aerodynamics and thus the proposed NN
controller is parameters-free and can be readily extended to
various types of wind turbines with different system param-
eters. In addition, a high-gain observer is implemented to
obtain an estimation of rotor acceleration, which rejects the
need of additional sensors. Rigid theoretical analysis guar-
antees the tracking of rotor speed/generator power and the
boundedness of all other signals of the closed-loop system.

Tiwari et al. [42] proposed two methodologies to generate
pitch angle, Radial Basis Function Network (RBFN) and
Feed-forward based Back propagation network (BPN). The
control techniques implemented is able to compensate the
nonlinear characteristic of wind speed. The rotor is smoothly
controlled to maintain the generator power and the mechani-
cal torque to the rated value without any fluctuation during
rapid variation in wind speed. BPN uses wind speed and
generator speed as the input variable and generates pitch
angle in order to obtain desired performance of turbine. The
BPN is trained with two hidden layers thus, they have four
layers: Input layer, hidden layer I, hidden layer II and output
layer. The nodal operation of BPN is processed as ‘‘2-3-1’’
neurons in these layers. For the proposed RBFN controller
consists of three layers: an input layer, a hidden layer with

nonlinear RBF activation function and a linear output layer.
Wind speed and generator speed feed the input neurons that
are used to compute the pitch angle as the output neuron. The
neurons in the hidden layer performGaussian function, which
is used as the membership function in RBFN.

Mjabber et al. [75] investigated anRBFNN that was used in
order to estimate the nonlinear part of a wind turbine system.
The RBFNN consisted of one input layer for the electrical
power error, one hidden layer with 25 neurons, and one output
layer with the approximated nonlinear part so, the nodal
operation is processed as ‘‘2-3-1’’ The training algorithm is a
descendant gradient. The result is more stability in extraction
from wind power.

Han et al. [76] developed an individual pitch controller
based on a RBFNN model based on feedforward or preview-
measuring the wind speed with light detection and ranging
(LIDAR). The proposed controller presents as input the error
in the shaft speed and themeasurement of thewind speedwith
LIDAR, nevertheless the neuronal network was not report in
detail. Better behavior than a PI controller was obtained, but
once the wind speed has greater disturbances, the RBFNN
controller has a poor performance. The reason is that the
wind speed measurements delay RBFNN controller, and the
RBFNN + LIDAR controller can not anticipates the wind
speed, which should be avoided in large disturbances to
alleviate the structural loads of the wind turbine and extend
the life of the wind turbine.

Liu et al. [77] developed another individual pitch con-
troller. They presented a RBFNN with online training.
A sensor obtains the network input signals used for training.
Then, network can regulate the parameters of a PID con-
troller. For obtaining both constant power control and load
mitigation, the pitch command are mixed whit a collective
pitch controller.

Bagheri and Sun [78] for to maximize power capture,
propose a Nussbaum-type function that is utilized to address
the non-affine nature of the dynamic equations and an adap-
tive RBFNN to approximate on-parametric uncertainties of
controllers for variable-speed and variable-pitch. The control
strategy is, first, to increase the rotor speed up to the cutting
speed, the torque of the generator is used as input in this
phase. However, as the rotor speed increases and approaches
its nominal value, the generator torque also reaches its nom-
inal value. Therefore, it can no longer be used as an entry.
Therefore, the angle of inclination is adopted as an input to
maintain the speed of the rotor at its nominal value.

Dahbi et al. [79] present other studies that aim to maximize
the power generation by controlling the pitch angle. Pitch
angle control is developed using only one low cost circuit
based on ANN, which allows the PMSG to operate at an
optimal speed. ANN is composed of an input layer with two
neurons for receive power coefficient and tip speed ratio.
Two hidden layers, with 20 and 10 neurons respectively, and
an output layer with one neuron where the SP of the pitch
angle is generated. Pitch angle controller is based on that
Cpref = Cpopt. When the wind speed is higher than the rated
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speed, Cpopt must take small value, so ANN generates higher
corresponding value of βref; however, when the wind speed
is less than the rated one, Cpopt takes higher value till its
maximum, soANNgenerates less corresponding value of βref
till the minimum. The training process was under taken by
using Levenberge Marquardt algorithm to search the optimal
synaptic weights. It is an algorithm for the optimization of
the quadratic error due to its fast convergence properties and
robustness.

Kang et al. [80] presented a control method based on
adaptive PID neural network where, the parameters of the
PID neural network are self-regulating. The improvedmethod
of gradient descent is used to optimize the weights of the
networks and to avoid that the weights of the neural networks
fall in local optima; the PSO algorithm is adopted to select
initial weights. In the controller, the three-layer PID neural
network is constructed by combining PID and a forward
neural network. The input layer has 2n neurons, half are used
to enter values of objects, and the others are used to enter
values that returned from the output of the control system.
The hidden layer has 3n neurons, including n proportions, n
integration neurons and n differentiation neurons. The output
layer has n neurons, n is the number of control loops.

Perng et al. [81] suggested a RBFNN to determine control
system functions. Depending on the control system, the opti-
mal kp −ki parameters in different d k can be determined
for various conditions. The RBF parameters used are, hidden
neurons = 7, learning rate = 0.01, training times = 5000,
and number of training data = 21. The early stopping rule
is used in the upper bounds to allow the RBFNN algorithms
to converge. When the mean squared error generated by
the error output began to increase, the RBFNN algorithm is
stopped.

Jafarnejadsani et al. [82] developed a RBFNN for adap-
tive control of pitch angle of the blades. The number of
inputs is less than four. The input domain is divided by
uniformly-spaced grid and the system nonlinearity is eval-
uated in each node. To train the RBF NN is used the Lya-
punov stability analysis to derive the updating rules for RBF
network weights. A robust controller was obtained for the
uncertainty.

Raza and Rahim [83] presented a pitch controller; the
gains of the PI controller are obtained from a trained ANN.
The input-output training data was generated by differen-
tial evolution optimization method (DEIT), this technique
is a method which finds the optimum value of an objective
function subject to satisfying the system constraints. In the
pitch control algorithm, the input to the network is the set
of wind speeds collected for a sample time and the output-
trained variables are the controller gains. The proposed ANN
model is trained using adaptive back-propagation algorithm;
the weights are updated to minimize the sum of the squares
of errors.

Poultangari et al. [84] propose an optimal PI collective
pitch controller, the RBF neural network must be trained with
optimal training dataset. This RBF neural network then gives

the optimal PI gains. In order to obtain an optimal training
data set, particle swarm optimization (PSO) evolutionary
algorithm is used. Using PSO and for some constant wind
speed above the rated, a pair of optimal PI gains are obtained
for the corresponding constant wind speed. The proposed
controller adapted itself to any wind speed profile.

Lin and Hong [85] designed an Elman neural network
(IENN)-based algorithm designed to allow the pitch angle
adjustment for power regulation for optimal wind-energy.
The architecture of the IENN including the input layer, hidden
layer, context layer and output layer. With two inputs, error
of shaft speed and error of pitch angle. An online training
IENN controller use back-propagation (BP) learning algo-
rithm with modified particle swarm optimization (MPSO).
The connecting weights of the IENN are trained online by BP
methodology. MPSO is adopted to adjust the learning rates in
the BP process to improve the learning capability.

Wang and Hyun [86] used an ANN pitch angle con-
troller for the output power control of wind turbine. This
approach was based on Auto-Regression Moving Average
(ARMA) wind speed prediction model, where is combined
with Autoregressive model (AR) and MA model (Moving
average model). The wind speed is predicted using its past
data and estimation error in a time series model form. This
predicted was used in calculation of the pitch angle control
value. The last pitch angles, last rotor speed and real power
output data are used as the input of the ANN controller and
predicted wind speed is used to calculate the future value of
rotor speed. The ANN is trained offline using a training data
set that covers the entire operating range of the system. In this
scheme, sensors are used to sample the rotation speed of the
shaft and the power of the generator. The results showed that
the proposed control method was effective.

According to the aforementioned research works,
Table 3 presents a summary with the results with each
experiment.

C. INTELLIGENT SEARCH ALGORITHMS
Intelligent search algorithms (ISA) is a solving method based
on phenomena in nature, an example is the simulation of the
law of biological evolution. Two primary characteristics of
this algorithms are population search strategy and informa-
tion exchange among individuals in a population. Because of
the universality of the search algorithms, it has broad appli-
cations and is especially suitable for handling complex and
non-linear problems. These algorithms has intelligent char-
acteristics such as self-organization, adopts simples coding
technology to express complex structures, self-adaptability,
guides the system to learn or determine the search direction,
self-learning, the way a population organizes a search; and
the parallel processing because it can search many regions
in the solution space at the same time [73]. Classic ISA
include Genetic Algorithms (GA), Particle Swarm Optimiza-
tion (PSO), and Differential Evolution (DE), and they can
be used to solve such problems as optimization and machine
learning [38].
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TABLE 3. Summary of pitch angle controllers with ANN models.

GA’s can be viewed as a general-purpose search method,
an optimization method or a learning mechanism. These
represent an optimization approach where a search is made
to ‘‘evolve’’ a solution algorithm that will retain the ‘‘most
fit’’ components, in a procedure that is analogous to the
Darwinian principles of biological evolution: reproduction
and ‘‘survival of the fittest’’ [38]. According to [88], the evo-
lutionary process begins with randomized or manually ini-
tialized solutions. Normally, a population of solutions is used
and the candidate solutions are called individuals or chromo-
somes. The selection algorithms are responsible for choosing
which solution will have the opportunity to reproduce and
which will not. For all solutions of the population, crossing
and mutation operators can be designed in the basic structure
of an AG it is also necessary to know the transition from one
generation to another, which consists of four basic elements
which are shown in Fig. 10.

FIGURE 10. Cycle of the genetic algorithm.

In the AG, the crossing is the main fusion method on
the genetic information of two individuals; if the coding is
chosen properly; two good solutionswill produce a successful
solution. The mutation has the effect of safely disturbing the
solutions in order to introduce new features that were not
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present in any solution of the population. The best solutions
that have been generated in this way are selected for the next
generation. The replacement or insertion is the procedure
to create a new generation of solutions to the previous one
with its descendants. A space is created for offspring in the
solution population eliminating the original solutions from it.
Finally, the evolutionary cycle examines, if the termination
condition has beenmet, and genetic optimization of execution
continues, if this is not yet the case [87].

The basic idea of PSO is to find the optimal solution
through collaboration and information sharing among indi-
viduals in a population. The main motivation stems directly
from of the group of animal on nature, such as bird flocks, fish
schools, ant colonies and swarm of bees, which exhibit an
amazing self-organization and collective and social adapta-
tion capabilities. A swarm is a population that is grouped even
though each individual seems to move in a random direction.
Therefore, the behavior of an individual is often insignificant,
but their collective and social behavior is important, since
the intelligence of the swarm comes from their collective
adaptation to different circumstances in nature [38].

Initially, in PSO algorithm a swarm of particles is randomly
generated. A great number of individual or particles move
around in a solution space to a problem, each individual
has a position and a velocity zero which is dynamically
adjusted according to the experiences of its own and those
of its companions; and represents a potential solution to the
optimization problem. Therefore, each individual is led to a
stochastically weighted average of the best previous point of
his own and of the population. In each step of the procedure,
the global best solution obtained in the entire population is
updated. Using all of this information, particles realize the
locations of the search space where success was obtained,
and are guided by these successes until finding an optimal
solution [88].

The parameters that must be adjusted to not exceed pro-
cessing resources are the population size since each particle
is a potential solution of the problem and the detention cri-
teria according to a predefined number of iterations without
obtaining better results. The advantages of PSO are sim-
plicity, ease of implementation, and no adjustment of many
parameters [89].

DE is a method that optimizes a problem by iteratively
trying to improve a candidate solution with regard to a given
measure of quality. DE also uses the global searching strategy
based on population, and can do mutation, crossover and
the selection operations are based on the difference of best
solutions. DE is used for multidimensional real-valued func-
tions therefore also be used on problems that are not even
continuous, are noisy, change over time, etc. [89].

Initially, a random population is generated, and then
any two individuals are weighted and a third individual is
added according to certain rules to produce new individual.
A predetermined individual is compared to the new individual
and if the fitness of the new individual is better than the
aptitude of the predetermined individual, then in the next

generation the new individual will replace the predetermined
individual, otherwise we must keep the predetermined indi-
vidual. Through iterations, we can maintain good individuals,
eliminate inferior individuals and guide the search process
towards the optimal solution [38].

The main advantages of the DE algorithm can be sum-
marized as the following three points: few parameters when
using simple differential mutation, robustness since not easy
to fall into local optimum, and faster convergence rate [39].

DE is an ISA, showing particular similarities to GA and
hence can be called as a genetic-type method. DE has certain
differences, particularly; the mutation is different, except it
serves the same purpose of avoiding minimum or maximum
local. DE has a notion of population similar to PSO rather
than GA as its population members are called agents rather
than chromosomes [38].

ISA are a combinatorial optimization method that has been
applied in diverse automatic control areas, power systems,
and power electronics [39]. In the control of pitch of wind
turbines, there are several documented articles. In [90], gain
scheduling control (GSC) approach is employed to con-
trol the blades pitch angle of a wind turbine in the above
rated wind speeds and minimizing the destructive mechanical
fatigue loads, while acquiring a fast and accurate response in
the operational range of the mechanical components. Here,
the GSC approach uses a set of linear quadratic Gaussian
controllers to achieve the mentioned objectives. A number of
operating points are selected, each representing the system
state in a specific wind speed in the above rated wind speed
span (region III). Subsequently, a time-invariant linear control
model is designed, derived from the non-linear state space
system for each of them. Finally, a gain scheduling procedure
is planned using DE optimization algorithm, in order to apply
on the suitable controller as the operating point changes,
such that the controller suppresses transient excursions and
achieves a good and fast regulation in steady-state operation.

In [91] an intelligent GA algorithm approach has been
suggested for the PID parameter setting optimization of the
blade pitch controller. The algorithm rearranging the muta-
tion rate and the crossover point number together according
to the algorithm progress. The algorithm defines an iteration
number for convergence to an optimal value of population.
The iteration number may show some varieties according
to system function. After the iteration number given for
convergence is passed, the algorithm agrees that there are
the local minima or maxima. In order to recover the local
minima or maxima, the algorithm implements two opera-
tions. One of them is that the mutation rate is increased a
predetermined range when the algorithm passes the iteration
number. The increase continues until the maximum mutation
limit. The mutation value returns the starting mutation value
after the maximummutation limit. If the algorithm gets rid of
the maxima and minima local, the mutation rate is returned
the starting value. Other is that the crossover point value
is increased for to enrich the population when the iteration
limit value is passed; and if the fitness function repetitive
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TABLE 4. Summary of pitch angle controllers with ISA models.

value being same exceeds the iteration limit, the crossover
point is raised. Two criteria were taken into consideration
when determining the fitness function. First that the total
error of the system being as small as possible and second the
acceptable maximum overshoot value.

Behera et al. [12] and Hodzic and Tai [92] use a
Proportional-Integral controller with gain Kp and Ki in pitch
angle control loop. However, the proportional gain Kp and
integral gain Ki are tuned through PSO algorithm.

Ebrahim et al. [93] proposed a pitch controller based
on The Moth-Flame Optimization (MFO) algorithm. MFO
technique is a novel nature-inspired optimization paradigm.
MFO algorithm mimics the navigation method of the moths
in nature. Moths fly in the night by maintaining a fixed
angle on the moon for traveling in a straight line for long
distances. In the proposed MFO technique, it is assumed that
the candidate’s solutions are moths and the PID parameters
are the position of moths in the search space. Therefore,
the moths can fly in 3-D space representing the three con-
troller parameters Kp, Ki and Kd with changing their position
vectors.

Table 4 presents a summary of the results of each techno-
logical development carried out with ISA for pitch control in
a wind turbine.

ISA are algorithms that adopt a natural evolutionary
mechanism to perform a complex optimization process and
can solve several difficult problems quickly and effectively.
However for pitch control applications, they are regularly
only used as a search complement for optimal control param-
eters of control, for example, in the previous section theworks
of [84] and [85] where ISA algorithms were used to optimally
initiate an ANN. In section 4.4, ISA algorithm works are
mentioned combined with different techniques of an expert
system.

D. HYBRID SYSTEMS
FLC, ANN and ISA have similar objectives but their methods
are different. Therefore, the combination of these methods

forms new processing patterns and we can improve the per-
formance of the control algorithms. Combining fuzzy logic
with a neural network, we can construct various fuzzy neural
network models that not only mimic a human being’s logi-
cal thinking, but also can have a learning trait. In addition,
the learning process of a neural network requires a search
in a large space in which many local optimal points exist,
so sometimes it is easier to solve training problem for a neural
network with a search algorithm [38].

In the pitch control of wind turbine, there are two dif-
ferent techniques. In one of this techniques, authors that
obtain a pitch control signal directly, they apply FLCmethods
combined with optimal search engines for their membership
function or use ISA algorithms for optimal training of a neural
network. Hybrid proposed developments are able to select
rules that are more productive for an FLC from an ANN,
these types of systems are known as Neuro-Fuzzy. In [94] the
author proposes a GA based methods planed for in breeding
fuzzy if-then states. GA generates a set of fuzzy if-then rules
and it estimates each fuzzy if-then solution in the progression
sets. Next, genetic algorithm results in new fuzzy if-then laws
by genetic operation like: crossover, mutation, selection. The
algorithm restores a part of the progression with newly gen-
erated fuzzy if-then rules. If a pre-identified stopping share
isn’t content, comeback to second step. Finally, the algorithm
replaces the worst fuzzy if-then rules with the smallest fitness
values with the newly generated fuzzy if-then rules with the
utmost fitness values. The number of removed fuzzy if-then
rules is usually the same as that of added rules in classic
genetic algorithm. Controller has two inputs and one output.
This controller provides a suitable pitch angle upon catch
wind speed. Kasiri et al. [94] add a neural network to your
proposal. In this new approach, NN has been trained by
speculative data. That being so this method uses the NN
results in definitional of Fitness Function. Fitness function
includes two sections; the first compares generated rules with
optimal values, thus a rule that covers most of the best values
could be a desired rule. In the second, numeral equivalent of
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TABLE 5. Summary of pitch angle controllers with hybrid expert controller.

rules are being calculated on wind turbine power formula,
thus these rules calculated on NN either, a rule that gives the
least value of trained slip could be a good rule. These rules
set pitch angle in the best setting to optimally control wind
turbine.

In [94], other investigation presents that the algorithm
objective is tuning the membership tasks of the linguis-
tic terms of the property for approximation null values in
relational database organization is ready as follows above
algorithm. This kind of objective function recommends the
optimality of a chromosome or string in a genetic algorithm
is Fitness Function. Accordingly that definite string way be
rated aggressive all the strings. Ideal string, or not less than
strings which are more optimal, are sanction to fabricate and
combination.

Table 5 presents a summary of the results of hybrid expert
controller where control signal is directly obtain.

Other techniques use a series of input data (rotor speed,
blade angle of inclination and power coefficient) and are
defined as input for the learning technique. The functions
for each combination build an ANFIS model and then
train respectively. Subsequently, the performance achieved is
reported. From the beginning, the most impressive input in
the prediction of the output was identified and determined.
It means that the dissipation of errors of the estimation of the
output parameter will be the smallest and the influence of the
input will be greater for the determined output.

Asghar and Liu [95] proposed an expert system of hybrid
learning control in lines based on neuro-fuzzy inference sys-
tems where instantaneous wind values, TSR, rotor speed and
mechanical power are estimated through fuzzy membership
functions. The values obtained for the instantaneous wind
speed are used to determine the optimal speed of the rotor
and obtain the maximum power. The ANN trains the input
membership functions by using latest square method and
back propagation gradient decent method to accurately esti-
mate the effective wind speed without using any mechanical

wind speed sensor. Then, the estimated effective wind speed
and optimal TSR are used to design an optimal rotor speed
estimator.

Morshedizadeh et al. [96] examine common Supervisory
Control and Data Acquisition (SCADA) data over a period
of 20 months for 2.3 MW turbines. In this study, an algorithm
is proposed to impute values of data that are missing, out-of-
range, or outliers. It is shown that an appropriate combination
of a decision tree and mean value for imputation can improve
the data analysis and prediction performance by the creation
of a smoother dataset. In addition, principal component anal-
ysis is employed to extract parameters with power production
influence based on all available signals in the SCADA data.
Then, a new data fusion technique is applied, combining
dynamic multilayer perceptron (MLP) and adaptive neuro-
fuzzy inference system (ANFIS) networks to predict future
performance of wind turbines. This prediction is made on a
scale of one-hour intervals. This novel combination of fea-
ture extraction, imputation, andMLP/ANFIS fusion performs
well with favorably low prediction error levels.

In [97] a novel algorithm for wind speed estimation in
wind-power generation systems is proposed, which is based
on adaptive neuro-fuzzy inference system (ANFIS). The
inputs of the ANFIS wind speed estimator are chosen as the
wind turbine power coefficient, rotational speed and blade
pitch angle. During the offline training, a specified model,
which relates the inputs to the output, is obtained. Then,
the wind speed is determined online from the instantaneous
inputs. Neural network in ANFIS adjusts parameters of mem-
bership function in the fuzzy logic of the fuzzy inference
system (FIS).

V. CONCLUSION
The theories and methods presented in this paper mimic the
patterns of biological behavior to develop information pro-
cessing capacity and intelligent decision making. A diffuse
system is based on brain functions such as language and
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inference, processes information and adopts rules of solution
according to the experience defined by human beings. This
technique began its application in pitch control for wind tur-
bines as an adaptive and robust control medium for conditions
of sudden changes in wind speed since its response does not
depend on a mathematical model but on the experience of the
programmer. Because a PID controller (or any of its variants)
can achieve a faster stability and obtain a high precision in
steady state, fuzzy logic was used for the tuning of this type
of controllers, which is functional in different speed ranges
of wind; however, in this way the severe disturbances in the
wind speed are not resolved. For this, a PID feedback control
and an FLC are used separately, PID working in steady state
and FLC in higher wind oscillations. Another option is for
a PID controller and an FLC to work in parallel, where the
control actions are added to obtain a single one. Eventually a
hierarchical system is used where from an FLC the gains are
obtained from a PID control, which in turn is the gain of the
integral part of a PI controller. These techniques are also used
for an individual pitch control with the intention of reducing
the torsional moments caused in the blades or the tower.

A neural network deals with information that is difficult
to analyze in a systemic way, forms own patterns based
on self-learning, its connection weights can predict changes
in its input variables and its parallel operation makes the
convergence to a solution faster. The use of neural networks in
wind energy systems is aimed at predicting the behavior of the
air to give an optimal and anticipated solution in the control
signal for the pitch angle. The most elaborated contributions
directly obtain the value of the pitch angle using real values
taken directly from sensors.

ISAs are used to modify the gains of a PID controller
on line with different wind speeds. It follows that ISAs are
applicable in expert control, particularly when optimization
is an objective.

The combination of these techniques has advantages in
response time and effectiveness, for example, the learning
process of a neural network requires a search in a large space
in which there are many local optimal points, so it is some-
times difficult to solve a training problem. A genetic algo-
rithm is very suitable for large-scale searches and can find an
optimal global solution with high probability. The combina-
tion of a neural network and an intelligent search algorithm
can build a neural network whose connection weights evolve
continuously with the change in the environment, and can
simulate biological neural networks much more reality. This
type of combination reduces the processing time, approx-
imates the behavior of the wind and obtains a better and
anticipated response of the control signal for the pitch angle.

Most important success factor of neuro fuzzy systems
structure is the accessibility of valuable learning algorithms.
Planned approaches optimally control Wind Energy Con-
version Systems with changing Pitch angle and estimates
parameters. In addition, access to accurate power produc-
tion prediction of a wind turbine in future hours enables
operators to detect possible underperformance and anomalies

in advance. This may enable more proactive and strategic
operations optimization. The most important contribution of
the hybrid expert controller is the ability to realize the non-
linear relationships between input/output data.

After making a study of the recent works in the field of
expert systems applied in pitch control in wind turbines, FLC,
ANN and ISA are considered as the most developed and
cutting-edge techniques. They develop adaptation to control
problems where it is not possible to have a developed math-
ematical model of the system. They facilitate the handling
of information of multiple variables, organizing behavior
patterns for the prediction and anticipation of the control
signal, as well as the search for the optimal solution among
the possible solutions. The main contribution of expert sys-
tems in the wind turbines is to solve the non-linearity of the
systems, since the behavior of the air in frequency and speed
is unpredictable.

The combination of these techniques leads us to newmeth-
ods of control. For example, we can combine fuzzy systems,
neural networks and search algorithms, so that establish a dif-
fuse neural network with evolutionary capacity to implement
and express human thought effectively.

Modern wind turbines require complex tasks with high
precision, in unforeseen conditions. They face climatic adver-
sities that cause various oscillations in the system, which
increases mechanical stress, and the risks to the system and
the environment grow exponentially. Conventional control
techniques may not be very effective under these conditions,
while expert control has great potential.
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