Por favor, use este identificador para citar o enlazar este ítem: http://ciateq.repositorioinstitucional.mx/jspui/handle/1020/430
Hot-spot temperature forecasting of the instrument transformer using an artificial neural network
EDGAR ALFREDO JUÁREZ BALDERAS
Joselito Medina-Marin
Juan C. Olivares-Galvan
Norberto Hernández Romero
Juan Carlos Seck Tuoh Mora
Alejandro Rodriguez-Aguilar
Acceso Abierto
Atribución-NoComercial-CompartirIgual
2169-3536
10.1109/ACCESS.2020.3021673
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
https://ieeexplore.ieee.org/document/9186082
Artificial neural networks
Resin-cast instrument transformer
Epoxy resins
Finite element analysis
Cast resin medium voltage instrument transformer are highly used because of several benefits over other type of transformers. Nevertheless, the high operating temperatures affects their performance and durability. It is important to forecast the hot spots in the transformer. The aim of this study is to develop a model based on Artificial Neural Networks (ANN) theory to be able to forecast the temperature in seven points, taking into account twenty-six input data of transformer design features. 792 simulations were carried out in COMSOL Multiphysics® to emulate the heat transfer in the transformer. The data obtained were used to train 1110 ANN with different number of neurons and hidden layers. The ANN with the best performance (R D 1, MSE D 0.003455) has three hidden layers with 10, 9 and 9 neurons respectively. The ANN predictions were validated with finite element simulations and laboratory thermal tests which present similar patterns. With this accuracy in the prediction of hot-spot temperature, this ANN can be used to optimize the design of instrument transformers.
This work was supported in part by the Consejo Nacional de Ciencia y Tecnología (CONACYT) in coordination with the Postgrado de CIATEQ, A. C., Mexico; in part by the Universidad Autónoma del Estado de Hidalgo under Project CONACYT CB-2017-2018-A1-S-43008; in part by the Universidad Autónoma Metropolitana; and in part by the company Arteche North America, S. A. de C. V.
IEEE
2020
Artículo
IEEE Access, v. 8, p. 164392-164406
Inglés
Público en general
Juarez-Balderas, E. A., Medina-Marin, J., Olivares-Galvan, J. C., Hernandez-Romero, N., Seck-Tuoh-Mora, J. C., & Rodriguez-Aguilar, A. (2020). Hot-spot temperature forecasting of the instrument transformer using an artificial neural network. IEEE Access, 8, 164392-164406. https://doi.org/10.1109/ACCESS.2020.3021673
INTELIGENCIA ARTIFICIAL
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos Publicados en Revistas Indexadas

Cargar archivos:


Fichero Tamaño Formato  
Hot-spot temperature forecasting.pdf3.3 MBAdobe PDFVisualizar/Abrir